
  

Molecules 2019, 24, 4609; doi:10.3390/molecules24244609 www.mdpi.com/journal/molecules 

Article 

Quantitative Analysis of Cold Stress Inducing 
Lipidomic Changes in Shewanella putrefaciens Using 
UHPLC-ESI-MS/MS 
Xin Gao 1,2,3,4,5, Wenru Liu 1,2,3,4, Jun Mei 1,2,3,4,* and Jing Xie 1,2,3,4,* 

1 College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; 
gxdg@163.com (X.G.); wenrul@163.com (W.L.) 

2 National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean 
University, Shanghai 201306, China 

3 Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, 
China 

4 Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy 
Saving Evaluation, Shanghai 201306, China 

5 School of Health and Social Care, Shanghai Urban Construction Vocational College,  
Shanghai 201415, China 

* Correspondence: jmei@shou.edu.cn (J.M.); jxie@shou.edu.cn (J.X.);  
Tel.: +86 21 61908113 (J.M.); +86 21 61900351 (J.X.) 

Academic Editor: Rosário Domingues and Pedro Domingues 

Received: 11 November 2019; Accepted: 13 December 2019; Published: 16 December 2019 

Abstract: Shewanella putrefaciens is a well-known specific spoilage organism (SSO) and cold-tolerant 
microorganism in refrigerated fresh marine fish. Cold-adapted mechanism includes increased 
fluidity of lipid membranes by the ability to finely adjust lipids composition. In the present study, 
the lipid profile of S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C was explored using 
ultra-high-pressure liquid chromatography/electrospray ionization tandem mass spectrometry 
(UHPLC-ESI-MS/MS) to discuss the effect of lipid composition on cold-adapted tolerance. 
Lipidomic analysis detected a total of 27 lipid classes and 606 lipid molecular species in S. 
putrefaciens cultivated at 30, 20, 10, 4, and 0 °C. S. putrefaciens cultivated at 30 °C (SP-30) had 
significantly higher content of glycerolipids, sphingolipids, saccharolipids, and fatty acids 
compared with that at 0 °C (SP-0); however, the lower content of phospholipids (13.97%) was also 
found in SP-30. PE (30:0), PE (15:0/15:0), PE (31:0), PA (33:1), PE (32:1), PE (33:1), PE (25:0), PC (22:0), 
PE (29:0), PE (34:1), dMePE (15:0/16:1), PE (31:1), dMePE (15:1/15:0), PG (34:2), and PC (11:0/11:0) 
were identified as the most abundant lipid molecular species in S. putrefaciens cultivated at 30, 20, 
10, 4, and 0 °C. The increase of PG content contributes to the construction of membrane lipid 
bilayer and successfully maintains membrane integrity under cold stress. S. putrefaciens cultivated 
at low temperature significantly increased the total unsaturated liquid contents but decreased the 
content of saturated liquid contents. 
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1. Introduction 

Bacterial cell membranes are mainly composed of glycerolipids such as phospholipids (PL) and 
glycolipids (GL), which play an important role in membrane properties and functions [1]. 
Membrane lipid homeostasis and adaptation to changing environmental conditions (including 
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temperature, oxygen, pressure, and so on) are essential for bacterial survival [2,3]. However, some 
researchers mainly focused on the fatty acids composition of the bacterial cell membrane instead of 
the lipids [4,5]. Most of the fatty acids in bacteria could be esterified to lipids, such as PL and GL, 
which have been largely ignored [6]. The terms “lipidome” and “lipidomics” were firstly introduced 
by Kishimoto et al. [7] and then defined from Han and Gross [8]. According to these authors, the aim 
of lipidomics is “the full characterization of lipid molecular species and of their biological roles with 
respect to expression of proteins involved in lipid metabolism and function” [9]. However, only a 
few studies reported the lipidomics of bacteria under cold stress, which are possibly due to the 
complexity and distinct types of lipids that can be found in different bacteria. Also, the most 
commonly used methods for the analysis of lipids in bacteria are thin-layer chromatography (TLC, 
reviewed by Fuchs [10]), gas chromatography (GC) [11,12], and nuclear magnetic resonance (NMR) 
[13,14], which offer limited information. Now, some methods based on mass spectrometry (MS) 
have been used for the detailed analysis of bacterial cell membranes lipidomics, including directly 
analyzing lipid extracts by matrix-assisted laser desorption ionization (MALDI) [15,16], liquid 
chromatography (LC) [17], and electrospray ionization (ESI) [16,18,19] coupled to MS. The 
introduction of UHPLC coupled to tandem MS (UHPLC-MS/MS) allows rapid and effective 
separation of individual lipid species and has been become a powerful tool for analyzing lipid 
classes in bacteria [20]. 

Shewanella putrefaciens is a Gram-negative, rod-shaped bacterium and a well-known specific 
spoilage organism (SSO) of refrigerated fresh marine fish [21], such as Pseudosciaena crocea [22,23], 
Paralichthys olivaceus [24], Oncorhynchus kisutch [25], Sparus aurata [26], Thunnus albacares, Salmo salar 
[27], Rachycentron canadum [28], and so on. S. putrefaciens could grow on fish during cold storage and 
produce large amounts of trimethylamine (TMA) with the characteristic “fishy” aroma [29,30]. 
Furthermore, quality degradation in marine fish muscle may also lead to other amine compounds 
(ammonia, methylamine (MA), and dimethylamine (DMA), etc.) which all induce an “off-flavor” in 
marine fish [31,32]. This “fishy” aroma could generalize associations with fish spoilage and have 
significant adverse effects on the marine fish consumption. S. putrefaciens is a cold-adapted 
microorganism in refrigerated marine fish, and cold-adapted microorganisms exhibit many unique 
characteristics and molecular mechanisms that allow them to adapt to the environment [33,34]. Low 
temperature presents many challenges for cold-adapted microorganisms to grow at low 
temperature, including the increased liquid water viscosity, decreased enzyme activity, reduced 
lipid membranes’ fluidity, enhanced the stability of inhibiting nucleic acid structure, and disturbed 
protein conformation [35–38]. 

However, until now, no studies have addressed cold adaptation in S. putrefaciens. The aim of the 
present study is to analyze the changes in the content, composition, and saturation levels of lipids in 
S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C using lipidomic method and to identify the major 
lipids and molecular species that are induced or enriched due to cold stress. 

2. Materials and Methods 

2.1. Pretreatment of Samples 

Broth cultures of S. putrefaciens (ATCC 8071) were prepared as follows: 1 mL aliquots of 
logarithmic phase grown broth cultures were transferred to 250 mL erlenmeyer flasks containing 100 
mL medium. The flasks were incubated aerobically agitating at 200 rpm, at 30, 20, 10, 4, and 0 °C, 
until an absorbance (OD600) of 0.4 was attained. The bacterial cells were then harvested by 
centrifugation (11,960 × g, 20 min), rinsed in phosphate buffer saline (pH 7.0) and stored at −80 °C 
until use. 

Cells of S. putrefaciens ATCC 8071 were resuspended in 400 μL ice-cold 75% methanol solution 
and sonicated for 15 min at 200 W using a high intensity probe sonicator (UP-250S sonicator, Scientz, 
Ningbo, China). Then, the mixture was fully vortex oscillated with 1 mL ice-cold methyl tert-butyl 
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ether (MTBE) and rotated at 4 °C for 1 h. After sonicating for 15 min, 250 μL of ultrapure water was 
added and oscillated for 1 min and incubated at room temperature for 10 min. Mixtures were 
centrifuged at 14,000 × g at 4 °C for 15 min. Lipids in the organic phase were separated and 
evaporated by nitrogen flow. The separated lipids extract were re-dissolved in 
isopropanol/methanol (1:1, v/v) solutions. All the samples were repeated six times. 

2.2. Lipids Separation by UHPLC 

UHPLC analyses were carried out using an UltiMate 3000 system (Thermo Scientific, Dionex 
Softron GmbH, Germany) with an C18 column (Xselect CSH 100 mm × 2.1 mm with 1.7 μm particle 
size; Waters Corporation, Milford, MA, USA), and the lipids samples were delivered at a flow rate of 
0.25 mL/min. The injection volume was 5 μL, and the column temperature was 45 °C. Mobile phases 
used were acetonitrile/water (6:4 v/v) containing 10 mM ammonium formate (mobile phase A) and 
acetonitrile/isopropanol (1:9 v/v, mobile phase B). Lipids were separated using a gradient elution as 
follows [39,40]: 0–1.5 min 37% B; 1.5–4 min 37–45% B; 4–5 min 45–52% B; 5–8 min 52–58% B; 8–11 
min 58–66% B; 11–14 min 66–70% B; 14–18 min 70–75% B; 18–20 min 75–98% B. 

2.3. Lipids Quantification by Mass Spectrometric Analysis 

MS was performed on a Q-Exactive plus MS (Thermo Scientific, Dionex Softron GmbH, 
Germany) with electrospray ionization (ESI) with heated ESI source in positive and negative mode. 
Nitrogen was used as both sheath gas and auxiliary gas and was set to 35 and 10 arbitrary units, 
respectively. The spray voltage was set to 3.2 kV for positive mode and 2.8 kV for negative mode, 
and ion transfer capillary was 320 °C. Higher-energy collision dissociation (HCD) with nitrogen gas 
and step collision energy (NCE) of 15, 25, and 35 were used to present a broader range of fragment 
ions. MS data were obtained in the scan range of m/z 240–2000 for positive mode and 200–2000 for 
negative mode and were processed using X calibur software version 2.2. 

2.4. External Calibration Method 

Changes in instrument sensitivity caused by degradation of lipid extracts, ion source 
contamination, or retention time shifts could be observed over time; therefore, the addition of 
quality control (QC) samples should be required to correct signal strength, retention time, or MS 
accuracy drifts over time [41,42]. Briefly, a pooled sample (referred to as QC) of the reconstituted 
extracts was prepared by combining 25 μL from each study sample. This sample was initially 
injected 7 times before the beginning of the run in order to condition the column. Then, the sample 
was re-injected once at the beginning, after every 7 injections of samples, and at the end of the run. 

2.5. Lipidomic Data Processing 

Lipid Search software 4.1.30 (Thermo Scientific, San Jose, CA, USA) was used to identify lipid 
molecular species and assess extractability evaluation by comparing peak abundances. The raw data 
were transformed into a multivariate matrix containing aligned peak areas with matched 
mass-to-charge ratios (m/z) and retention times and analyzed by SIMCA-P 14.1 software (Umetrics, 
Umea, Sweden). The differences in lipidomic signatures obtained from different protocols were 
examined using unsupervised principal component analysis (PCA). 

3. Results and Discussion 

3.1. Changes in Lipids Content 

Lipid Search 4.1.30 was employed in order to process ultra-high-pressure liquid 
chromatography/electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) records. 
Lipidomic analysis detected a total of 27 lipid classes and 606 compositional lipid species in S. 
putrefaciens cultivated at 30, 20, 10, 4, and 0 °C, including 17 phospholipids: cardiolipin (CA), 
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dimethylphosphatidylethanolamine (dMePE), lysophosphatidic acid (LPA), 
lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylglycerol 
(LPG), lysophosphatidylinositol (LPI), phosphatidic acid (PA), platelet-activating factor (PAF), 
phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylethanol (PEt), 
phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylinositol (PIP), 
phosphatidylmethanol (PMe), and phosphatidylserine (PS); 2 glycerolipids: diglyceride (DG), and 
triglyceride (TG); 5 sphingolipids: ceramides (Cer), diglycosylceramide (CerG2), triglycosylceramide 
(CerG3), ceramide phosphate (CerP), and sphingomyelin (SM); 4 saccharolipids: 
digalactosyldiacylglycerol (DGDG), monogalactosyldiacylglycerol (MGDG), 
monogalactosylmonoacylglycerol (MGMG), and sulfoquinovosyldiacylglycerol (SQDG). 

The content of total lipids (phospholipids, glycerolipids, sphingolipids, and saccharolipids) 
increased by 11.21% due to the cold stress at 0 °C (SP-0) compared with that of cultivated at 30 °C 
(SP-30, Figure 1). The contents of total lipids and phospholipids increased and the contents of 
glycerolipids, sphingolipids, and saccharolipids decreased with the temperature decrease for S. 
putrefaciens. Therefore, under the optimal temperature, SP-30 had significantly higher content of 
glycerolipids, sphingolipids, and saccharolipids compared with SP-0; however, the lower content of 
phospholipids (13.97%) was also found in SP-30. When S. putrefaciens was cultivated at 10, 4, and 0 
°C, no significant differences (p > 0.05) in the content of total lipids and phospholipids were found 
among these three treatments. 

 

Figure 1. The contents of total lipids, phospholipids, glycolipids, sphingolipids, saccharolipids, and 
fatty acids in Shewanella putrefaciens cultivated at 30, 20, 10, 4, and 0 °C (n = 7). SP-30, S. putrefaciens 
cultivated at 30 °C; SP-20, S. putrefaciens cultivated at 20 °C; SP-10, S. putrefaciens cultivated at 10 °C; 
SP-4, S. putrefaciens cultivated at 4 °C; SP-0, S. putrefaciens cultivated at 0 °C. Letters above bars 
indicate significant differences at the p ≤ 0.05 level and the error bars are STDEV. 

The importance of lipids composition in membranes for bacteria to survive under cold stress 
has been generally agreed [4,33,43]. Changes in lipids response to cold stress have been reported in 
different species of bacteria [2,44]; however, limited information is available on lipidomics, as stated 
in the Introduction. In this research, the results of the lipidomic analysis suggested that S. 
putrefaciens cultivated at a lower temperature might involve some adjustments in the lipid structure 
of the cell membrane as phospholipids changes are important for bacteria from cold environments 
[37,45]. The physiological function of bacterial phospholipids is pleiotropic, which could determine 
the integrity and function of cells [3,46]. The elimination or a significant alteration of a specific 
phospholipid level can result in significant changes in cell physiology or serious damage to cell 
integrity [45]. In the present study, compared with SP-30, S. putrefaciens cultivated at lower 
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temperature had significantly higher content of phospholipids and lower content of glycerolipids, 
sphingolipids, and saccharolipids. 

The content of CL, dMePE, PE, and PG increased with the decreased temperature, whereas 
PAF, PC, DG, TG, CerG2, CerP, SM, and DGDG decreased under cold stress (Figure 2). S. putrefaciens 
cultivated at 0 °C had a significant increase (p < 0.05) in the content of CL, dMePE, LPA, LPE, LPI, 
PE, PG, PIP, PMe, and MGMG, whereas declined contents of LPC, PA, PAF, PC, PEt, PI, PS, DG, TG, 
Cer, CerG2, CerP, SM, and DGDG were observed. Alterations in cultivated temperature also 
induced significant changes in the ratio of MGDG to DGDG [47]. S. putrefaciens cultivated at lower 
temperature resulted in a higher MGDG/DGDG ratio, which was an adaptive response to increasing 
membrane disorder. This change is considered as a compensatory mechanism to keep the 
biophysical properties of the cell membrane close to the lamellar to hexagonal phase transition. 
MGDG forms inverted non-lamellar structures as opposed to the bilayer conformation of DGDG. By 
introducing non-bilayer lipids into the cell membrane, the bacterial cell membrane is kept at a stable 
limit to respond flexibly to extracellular stimuli that interfere with the biophysical properties [48]. 

However, the mechanism is not clear, and the activities of interfacial glycosyltransferases may 
be regulated by the physical properties of substrates containing glycosyltransferases [49]. The higher 
MGDG/DGDG ratio in S. putrefaciens cultivated at lower temperature could contribute to maintain 
the cell membrane fluidity to enhance the cold adaption. 
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Figure 2. The contents of different compositional lipid classes in S. putrefaciens cultivated at 30, 20, 10, 
4, and 0 °C (n = 7). SP-30, S. putrefaciens cultivated at 30 °C; SP-20, S. putrefaciens cultivated at 20 °C; 
SP-10, S. putrefaciens cultivated at 10 °C; SP-4, S. putrefaciens cultivated at 4 °C; SP-0, S. putrefaciens 
cultivated at 0 °C. CL, cardiolipin; dMePE, dimethylphosphatidylethanolamine; LPA, 
lysophosphatidic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPG, 
lysophosphatidylglycerol; LPI, lysophosphatidylinositol; PA, phosphatidic acid; PAF, 
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platelet-activating factor; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PEt, 
phosphatidylethanol; PG, phosphatidylglycerol; PI, phosphatidylinositol; PIP, phosphatidylinositol; 
PMe, phosphatidylmethanol; PS, phosphatidylserine; DG, diglyceride; TG, triglyceride; Cer, 
ceramides; CerG2, diglycosylceramide; CerG3, triglycosylceramide; CerP, ceramide phosphate; SM, 
sphingomyelin; DGDG, digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol; MGMG, 
monogalactosylmonoacylglycerol; SQDG, sulfoquinovosyldiacylglycerol. Letters above bars indicate 
significant differences at the p ≤ 0.05 level and the error bars are STDEV. 

Phospholipids are the major components of bacterial cell membrane structures, and some 
species have also been recognized as signaling molecules affecting bacterial stress responses by 
activating specific protein phosphatases and kinases, mediating reactive oxygen generation, and 
altering cytoskeletal networks [45,50–52]. The dominating phospholipids were PE, followed by PG 
and PC (Figure 2). The relationship of PG and cold stress has been well investigated [53,54]. In the 
present research, the content of PG and PE were increased to be the main phospholipids component 
of the membrane in S. putrefaciens cultivated at lower temperature, which suggested that the 
increased content of PG could help maintain the stability of bacterial cell membranes under cold 
stress. However, the content of PA and PC decreased in response to cold stress for S. putrefaciens. PA 
is recognized to be an important lipid second messenger, regulating lipid metabolism and 
cytoskeleton dynamics, and affecting other signaling pathways [55–58]. Redón et al. [59] studied the 
effect of growth temperature (13 and 30 °C) on lipid composition of different Saccharomyces species 
showing that the content of triacylglyceride and medium-chain fatty acids increased when 
cultivated at low temperature, whereas the content of PA and the PC/PE ratio decreased. Klose et al. 
also showed PE increasing and that of PI is inconsistent with decreasing temperature [60]. The PI 
content of SP-30 was higher than those cultivated at lower temperature, and this trend was contrary 
to PE, which tried to explain the structural changes of polar head groups [61]. The volume of the 
relevant phospholipid molecules in bacterial cell membranes decreased with the lower temperature, 
and molecular volumes for lipids composed of palmitoyl-oleoyl chains and different head groups 
varied with temperature. Similar research was done by Torija et al. [62] who showed that lipids 
composition changed with the growth temperature, and the optimal fluidity of the membrane at low 
temperatures was regulated by changes of unsaturation degree. PC is an important structural and 
functional phospholipid in bacterial cell membranes and plays an important role in signal 
transduction as it is a major source of lipid secondary messengers, such as PA, LPC, LPA, and 
diacylglycerol [63]. The decreased contents of PC were also observed in S. putrefaciens cultivated at 
lower temperature, which coincides with the low abundance of PC detected in Bacillus subtilis under 
cold stress [64]. 

Lysophospholipids are generated as metabolic intermediates in phospholipid synthesis or from 
bacterial membrane degradation [65]. Besides playing an important role in phospholipid 
metabolism, lysophospholipid also has the function of second messenger and has extensive 
biological activities [66]. Lysophospholipids made up about 1.72% in SP-30 and increased to 2.32% in 
SP-0 and are mostly found in the form of LPE. Although the content of lysophospholipids is small, 
they are essential components of bacterial cell membranes. The change of lysophospholipid content 
could affect the spontaneous curvature of cell membrane and the conformation of ion channel [67]. 
LPE contents increased in S. putrefaciens cultivated at lower temperature, coinciding with the study 
results of Nina et al. that the environmental stress led to a significant increase in the content of LPE 
in Yersinia pseudotuberculosis [68]. The increased content of LPE led to an increase in the phase 
transition temperature of the cell membrane with a greater membrane rigidity [68,69]. 

3.2. Changes in Content of Different Compositional Lipid Species 

The ESI-MS/MS analysis identified PE (30:0), PE (15:0/15:0), PE (31:0), PA (33:1), PE (32:1), PE 
(33:1), PE (25:0), PC (22:0), PE (29:0), PE (34:1), dMePE (15:0/16:1), PE (31:1), dMePE (15:1/15:0), PG 
(34:2), and PC (11:0/11:0) as the most abundant compositional lipid species among the 606 lipids 
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detected in S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C. Figure 3 illustrates the change of some 
higher content compositional lipid species. S. putrefaciens cultivated at lower temperature 
significantly resulted in significant accumulation of compositional lipid species containing long and 
very long chain saturated fatty acyls, e.g., CL (68:2, 70:2, 70:3) and PS (29:0, 30:0). The increase in 
long- and very long fatty acids’ levels may be due to the increased activity of fatty acid elongase [70]. 
Lipidomic analysis also found several specific compositional lipid species in S. putrefaciens 
responding to enhance cold tolerance. For example, SP-20 had the lowest contents of PA molecules 
(32:1, 34:2, 34:1, 33:1, 35:2, 31:1, and 33:2). It is interesting to identify unsaturated bioactive LPC and 
LPE from the perspective of lipid metabolism and membrane structure, composition, and dynamics 
of these psychrophiles, which may regulate the activities of regulatory and signaling proteins [71]. 

 

Figure 3. The contents of some main compositional lipid molecules (AU × 108) in S. putrefaciens 
cultivated at 30, 20, 10, 4, and 0 °C (n = 7). SP-30, S. putrefaciens cultivated at 30 °C; SP-20, S. 
putrefaciens cultivated at 20 °C; SP-10, S. putrefaciens cultivated at 10 °C; SP-4, S. putrefaciens 
cultivated at 4 °C; SP-0, S. putrefaciens cultivated at 0 °C. CA, cardiolipin; dMePE, 
dimethylphosphatidylethanolamine; LPA, lysophosphatidic acid; LPC, lysophosphatidylcholine; 
LPE, lysophosphatidylethanolamine; LPG, lysophosphatidylglycerol; LPI, lysophosphatidylinositol; 
PA, phosphatidic acid; PAF, platelet-activating factor; PC, phosphatidylcholine; PE, 
phosphatidylethanolamine; PEt, phosphatidylethanol; PG, phosphatidylglycerol; PI, 
phosphatidylinositol; PIP, phosphatidylinositol; PMe, phosphatidylmethanol; PS, 
phosphatidylserine; DG, diglyceride; TG, triglyceride; Cer, ceramides; CerG2, diglycosylceramide; 
CerG3, triglycosylceramide; CerP, ceramide phosphate; SM, sphingomyelin; DGDG, 
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digalactosyldiacylglycerol; MGDG, monogalactosyldiacylglycerol; MGMG, 
monogalactosylmonoacylglycerol; SQDG, sulfoquinovosyldiacylglycerol. 

3.3. Changes in the Unsaturation Level of Compositional Lipid Species in Response to Cold Stress 

 

Figure 4. The contents of saturated liquids (AU × 108), unsaturated liquids (AU × 108), and the ratio of 
saturated/unsaturated liquids (SLs/ULs) in S. putrefaciens cultivated at 30, 20, 10, 4, and 0 °C (n = 7). 
SP-30, S. putrefaciens cultivated at 30 °C; SP-20, S. putrefaciens cultivated at 20 °C; SP-10, S. putrefaciens 
cultivated at 10 °C; SP-4, S. putrefaciens cultivated at 4 °C; SP-0, S. putrefaciens cultivated at 0 °C. 
Letters above bars indicate significant differences at the p ≤ 0.05 level and the error bars are STDEV. 

As shown in Figure 4, S. putrefaciens cultivated at low temperature significantly increased the 
total unsaturated compositional liquids content but decreased the content of saturated 
compositional liquids content. We employed the ratio of saturated/unsaturated compositional 
liquids (SLs/ULs) to indicate the degree of unsaturation of membrane lipids; a high ratio of SLs/ULs 
indicates the presence of more highly saturated membrane lipids, and vice versa. From SP-30 to 
SP-20, the changes in the ratios of SLs/ULs were big and the ratios of SLs/ULs were found to be 
lower at lower temperature. Bacterial cell membranes become more rigid at low temperatures, and 
chemical changes occur in some membrane fatty acids to prevent cellular damage [36,72]. The 
maintenance of bacterial membrane fluidity plays an important role in various physiological 
functions of cells, such as the transport of nutrients, the protection of adverse environment, and cell 
morphology [73]. The membrane lipid bilayers undergo a reversible change of state from a fluid 
(disordered) to a non-fluid (ordered) array of the fatty acyl chains. Phospholipids that contain UFAs 
have much lower transition temperatures than those lipids made of SFAs. SFA acyl chains can pack 
tightly, but the steric hindrance imparted by the rigid kink of the cis double bond results in much 
poorer chain packing of UFAs, even below the phase transition temperature. Therefore, lower 
temperatures result in an increase in the number of UFAs in the membrane [74,75]. The presence of 
cis double bonds in the membrane lipid acyl chains could be interfered with the acyl chain packing, 
resulting in poorer packing of the acyl chains and lower gel–liquid crystal phase transition 
temperature of the membrane. Therefore, unsaturated lipids are key molecules that regulate the 
fluidity of cell membranes [76]. 

4. Conclusions 

Lipidomic analysis suggested that the changes of lipid metabolism in S. putrefaciens could be 
better adapted to low-temperature environment as manifested by (a) the increase of PG content that 
contributes to the construction of membrane lipid bilayer and successfully maintains membrane 
integrity and normal protein function under low-temperature stress; (b) the increased content of 
unsaturation levels for lipids; and (c) reducing lipid signaling or second messenger molecules and 
their precursors, such as PA, PC, and PI, thereby inactivating downstream pathways and protecting 
S. putrefaciens from cold damages. The underlying biochemical and molecular mechanisms of 
specific compositional lipid species in response to cold stress are not well understood and deserve 
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further investigation. Precise quantification of specific compositional lipid species by TLC and GC 
coupled with flame ionization detector may provide additional information on how individual 
lipids participate in cold stress tolerance. 
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